DSA100(Drop Shape Analysis)series 操作指南 接触角测量---座滴法 Sessile drop.

1. 接通电源,打开位于仪器左后侧的开关。

2. 打开蓝色 LED 光源,一般情况下是一档(如需高速录像,选择二档)

3. 双击打开 Advance 软件,点击软件右侧中间按钮 ,选择仪器配置页,选择相应的 COM

口,确认软件与仪器已连接。选择 Syringe1,并确认注射器型号正确。玻璃注射器为 SY20, 一次性注射器为 SY3601;如 syringe1 显示为橙色,取下注射器,并点击右侧的"重新设 置硬件"。自动轴 Axis 如出现橙色,需对其进行重新设置硬件。

物质数据库 仪器配置 仪器配件 数据	格式管理 系统设置 安全 许可证	ш.
		选择仪器 DSA25KBUS (30013512) • 同 清除组件 连接状态 已连接
 Syringe 1 Syringe 2 Temperature sensor 1 Titling table 圧力流定 手动注射器 1 门 	自动化注射器 硬件标识符(ID) 名称 注射器类型	16817320 Syringe 1 「

液滴器升降装置每次开机后首次连软件必须进行重新设置硬件;液滴器选择装置,需根据实际单个滴液器装载情况选择对应的位置,如下图:slot1装载了 syringe1。确认所有

已连接器件都是绿色后,点击》回到测试页面。

物质数据库 仪器配置 仪器配件 数据格式管理	系统设置 安全 许可证	
		选择仪器 DSA100KBUS (30012996) • 方論(1)(+
		追接状态 已连接
 年本: Axis 1 Axis 2 Axis 3 Coupling control Coupling control Oscillation control Oscillation control Oscillation control Temperature sensor 1 Temperature sensor 1 Temperature sensor 2 Tagit Tagit<	海定遠岸器 硬件标识符(IC) 名称 満定単元的布局	67148993 流氓选择装置 Slot 1 Syringe 1 ● Slot 2 ● 更新 重新设置硬件 ▲ 荣要重置

5. 选择"座滴法",在右侧双击模板,或者选择模板后,右下方点击创建新测量。

	Drap Shape Foam Analysis Tensiometer	
最后─次测量 ◎	选择测量方法	
所保存的测量 		
▲ 座南法双表演	SFE 表面自由能计有方法 ISEA SafanagaSF对象运动	
	レージン (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	長二節法 たまが高上が市際などが成果である。	•
	watch	
	目标位置:所存在的数量	
	3	
* * * E	方法信息 模板详情	
方法信息 方法信息 关于分析方法的信息,即您可信助模板来为这种方法创) 新途动驶量 ^ 此为听动观型方法测量从图数。201 创建自定文的模板。	12112提致新建一个规律,输入所需要数进而 ^
主一种剧量类型。	该规定过调体表面上翻图》即建进并翻角则量并计算表面自由能。	
	一活動式的年度十年高上,5%改進都須須留時,動量改進給用和代表改革的代替分之间直接有度即接触者。利用千四酮式含年的 接触身计算時到回目的改善自命论。	
		¥.

6. 在"Measurement (测量)"磁贴右下角滴落相/环绕相物质, 1.选择注射器 syringel, 选择 Water 或 diiodo-methane。2.选择环绕相, 一般选择 Air。

滴落相/环绕相物质		滴落相/环绕相物质		
Syringe 1 [自动] •		环绕相 ▼		
物质	water •	物质	Air •	

如物质数据库里没有名称,可以选择自定义。

滴落相/环绕相物质					
Syringe 1 [自动] 🔹					
物质	(自定义)	•			
名称	GME				
密度	0.985	g/mL ▼			

 观察"实时显示"窗口,界面选择"^{*}",滑动"调节图像"的亮度使图像达到光线背景 良好的状态。亮度值通常在 40-60 左右,最理想是有灰偏白的画面。

下图为各功能图标说明。

8. 旋转镜头视角(千分尺)旋钮,**推荐**将摄像头视角调整为+2°。(或根据相应要求调整视 觉角度)

9. 在"仪器控制"窗口中,选择需要用的滴液器(syringe1或者其他),在升降平台控制区 域右侧,鼠标按住"""键上下拖动调整注射器上下位置,使注射器针头针处于观测 的窗口上方大约 1/5 处内位置。如果针头偏左或者偏右,可以旋转滴液模块架子上的旋 钮,调整到中间位置

10. 调整针头在图像中露出一小段长度大小及清晰状态,调节对焦(Focus)和缩放(Zoom) 旋钮,使针头边缘清晰。对焦旋钮用于调整清晰,缩放旋钮用于视觉范围放大缩小。

11. 使用针头外径进行比例尺校准。选取"实时显示"中的"¹¹",拖动出现的水平蓝色 线必须穿过针头,输入注射器直径(标配 NE44 针头是 0.517mm),点击"校准"获得比 例尺。

12. 注射器和滴液窗口(左下图)处,确认选择当前注射器,手动输入滴液体积(推荐 1-4ul)&加液速度,点击"定体积滴液"滴出液体。如需滴出较小液滴如 0.2ul,需将加液速度改为 0.2ul/s。

接触样品位置		*		分析		
模式	定体积滴液	-		实验类型	座滴法	•
体积	2.0	μL	70.0%	拟合方法	Ellipse (Tangent-1)	•
加液速度	2.67	µL/s		基线	自动基线	•
滴液计数	- 1 +	定体积滴液			a 🛛	-

- 13. 在"分析" 窗口,实验类型为座滴法,选择合适的拟合方法(默认为 Ellipse (Tangent-
 - 1)),基线选择"自动基线",点击

"单次测量",获取并记录接触角。

14. 测试结果数据在"结果"窗口显示,并且"图表"窗口内会显示接触角 VS 步骤编号的曲 线图。

Result	s					[2]	Charts [7]
*	CA(M) [°]	CA(L) [°]	CA(R) [°]	Volume [µL]	Temperatur Ti	me 🔅	👽 🔳 water/propanoll 8/92 (water/propanoll 8/92)
🔕 wat	ter/propanol	8/92 (water/pro	panoll 8/92) [9)]	🔹 Page 🚺	/1 ▶ ^	CA(L) [°] 🔻
√ 1	60	.15 60.3	0 60.01	0.00	27.0	10:40	60.00
✓ 2	60	.15 60.3	0 60.01	0.00	27.0	10:40	0.00
√ 3	60	.15 60.3	0 60.01	0.05	27.0	10:42	
✓ 4	60	.15 60.3	0 60.01	0.05	27.0	10:42	
V 5	60	.15 60.3	0 60.01	0.05	27.0	10:42	40.00 -
✓ 6	60	.15 60.3	0 60.01	0.05	27.0	10:42	
7	60	.15 60.3	0 60.01	0.05	27.0	10:42	
▼ 8	60	.15 60.3	0 60.01	0.05	27.0	10:42	20.00 -
V 9	60	.15 60.3	60.01	0.05	27.0	10:42	
4	60.	15 60.30	60.01				
<						~	.00 JV

15. 点击中间三角形 或者快捷键 page down, 最底部, 可以看到"导出", 可选择导出 excel 或者 pdf 文档。

导出		
输出格式	Excel	
导出		
报告		
输出格式	Simple report template	
预览 PDF	打印	

接触角自动化程序1(简易)

1. 在图像框设置处,勾选触发线,将出现的红色触发线拉至针头底端稍低位置(请勿和针 头平齐!)

实时显示		II 🛋 💽 🚟 🚺	🕸 🍳 🖂
1 mm		调整图像	1
		*	41 📜
			50 📜
	1	选择用于显示的图层	
		基线	
		检测到的轮廓	V
表面张力(SFT): mN/m	3	拟合的轮廓	
B形状系数: 体积:0 微升		结果	
11 10 0 100 1		SFT结果	
		信息	
		放大倍数	V
	2 -	触发线	
1712A /7 1/2	11-382 47	感兴趣区	
头短石杯: 座滴法[2]	· □ 骤: 10 温度: 22.4 °C	भग्राज्य. water (Air)	50 FPS

2. 在自动化程序磁贴处,选择并设置自动化程序动作。点击分析模块的 或者快捷键
 F3 执行自动化程序。然后上升样品台,接住液滴,等待程序结束出结果。下图示例为移 液后 5 秒进行单次测量。

自动化程序	5					
步骤	等待,直到	等待时间	动作	模式	间隔	
☑ 1		•	定体积滴液 2.0 μL 2.67 μL/s	▼ 完成后进入下一步	•	^
2	物体离开触发线	•	重置计时器	▼ 完成后进入下一步	•	
☑ 3		▼ 5s ▼	单次测量	▼ 完成后进入下一步	•	

如需确定液滴平衡时间,可在动作栏设置多测测量(需设置测量时长及取样速率),等待时间改为0。便可得到一条随时间变化的接触角曲线。

自动化程	序					
步骤	等待,直到	等待时间	动作	模式	间隔	
☑ 1		•	定体积滴液 2.0 µL 2.67 µL/s	▼ 完成后进入下一步	, ,	^
☑ 2	物体离开触发线	•	重置计时器	▼ 完成后进入下一步	, ,	
☑ 3		•	<mark>多次测量</mark> 30.0 s 2.0 fps	▼ 完成后进入下一步	; ▼	

接触角自动化程序2(针头自动定位)

1. 调整样品(台)高度至信息栏平齐,拖动滴液器升降平台,对"生成液滴位置""接触样 品位置""待机位置"进行保存,如下图:

往上拖动滑块,使针头至不被看见,点击保存为"待机位置"

 可设置程序如下: 下图为 2ul 液滴,移液后 5s 单次取值。

自动化程序									
步骤	等待,直到		等待时间	动作		模式	间隔		
☑ 1		*	•	选择注射器 Syringe 1	Ŧ	完成后进入下一步	•		
2		•	•	放置滴液器 生成液滴的位置 600 mi	Ŧ	完成后进入下一步	Ŧ		
☑ 3		•	•	定体积滴液 2.0 µL 2.67 µL/s	Ŧ	完成后进入下一步	•		
☑ 4		•	•	放置滴液器 接触样品的位置 600 mi	Ŧ	完成后进入下一步	•		
☑ 5		*	•	放置滴液器 生成液滴的位置 600 mi	Ŧ	完成后进入下一步	•		
☑ 6		•	5 s 🔻	单次测量	•	完成后进入下一步	•		
单击此处添加一个新步骤。									
								~	

也可以多次测量

自动化程序					
步骤	等待,直到	等待时间	动作	模式	间隔
☑ 1		• •	选择注射器 Syringe 1	完成后进入下一步	•
☑ 2		•	放置滴液器 生成液滴的位置 600 mi	完成后进入下一步	•
☑ 3		•	定体积滴液 2.0 µL 2.67 µL/s	完成后进入下一步	•
☑ 4		•	放置滴液器 接触样品的位置 600 mi	完成后进入下一步	•
☑ 5		•	放置滴液器 生成液滴的位置 600 mi	完成后进入下一步	•
☑ 6		•	多次测量 15.0 s 2.0 fps	完成后进入下一步	•
单击此处汤	添加一个新步骤。				
					~
+					

表面自由能测定(Surface free energy measurement)

- 1. ADVANCE 软件在接触角测试界面下方直接计算固体的表面(自由)能。
- 2. 按 pagedown,或者向下箭头图标,可以到表面自由能计算磁贴部分。
- 3. 选择状态方程"OWRK"计算方法,勾选计算的液体接触角平均值,软件自行显示出对应 的固体表面能结果和润湿曲线。

如 OWRK 计算得表面能值小于 20mN/m, 可更换为 Wu 计算模型

表/界面张力测定

----悬滴法 Pendant Drop

1. 接通电源,打开开关,等待仪器初始化结束,光源点亮。

2. 双击 ADVANCE, 打开软件,确认仪器已连接。选择"悬滴法",在右侧选择模板双击,或 者选择模板后,再右下方点击新建测试。

	Drop Shape Foam Analysis Tensiometer	
最后一次测量 💿	选择测量方法	选择模板
所保存的测量 國憲法		• > ### 2
45 建海法(1) 48 建海法双液滴	SFE 表面自由能计算方法 此注意月的加纳和列系式选择	
	反视法液滴 AUSE#BRAGE#Ment	
	是面法 王王王主的国际的风闲服为 1 户面计区域 网络市场发现液海 网络市场发生的成绩	
	with the second	050% · 5805%88
		3
х н В	方法信息	模板详情
方法信息 关于分析方法的信息,即忘可借助模板未为这种方法创 建一种则量头型。	最運動量 该現決为分社计关系IIIII的最速度件表面式背面化力则量。	人此为所改建最方法的数以模拟。却可通过此模拟新建一个观量,输入所需参数进而人 创建自定义的模拟。
	治進後以取決于各國政策與後方,治進紛時接触《集体流傳》的成功是常的以及集制。 用针头或強約至影響或得到改善的為其尺寸是影響必要的。或決影、最好投大中的國際透明面積分析分析計算得到表面或界面強力	

- 3. 旋转镜头倾斜旋钮,将镜头的视角调整为0°。(详见座滴法操作说明书)
- 4. 在"实时显示"窗口调整显示亮度。灰白背景最佳。
- 5. "滴落相/环绕相物质"选取对应注射器和液体信息。"滴落相/环绕相"选取对应液体物质 信息。也可以自定义,**重点在于需要正确的液滴密度。**

滴落相/环绕机	制版	滴落相/环绕相物质						
环绕相		手动注射器 1 [手动]						
物质	Air 💌	物质	(自定义) 🔻					
		名称	7K					
		密度	0.998 g/cm³ ▼					

- 6. 选取粗针头(推荐绿色 1.830mm 外径针头),手动调整使注射器针头针处于观测的窗口 上方大约 1/5 处内位置。调整放大旋钮及对焦旋钮,使针头放大倍数适宜,边沿清晰。
- 7. 对针头进行校准,选取"实时显示"中的"¹¹¹¹",将出现的蓝色横线,拖至横穿针头, 在下方输入注射器直径(NE45 **外径为 1.830mm**),点击"校准"校准尺寸。此步重要。

Mode:	Object Size:	Mag. Factor:			
manual 🔻	1.82 mm 🔻	97.0 px/mm	Calibrate		

8. 使用鼠标拖动蓝色分界线至注射器针头和液体的分界略下方,调整液滴体积至液滴 B

9. 导出数据。

自动化程序部分可参考座滴法测量接触角部分。

液体极性分析

--仅色散型固体表面的接触角法

注意: 该方法是计算方法。不涉及到直接测量。但需要提前获得测试量:

1. 待测液体的表面张力 (可通过悬滴法或力学法测得)

A ATA

- 需有一个仅含色散分量表面能的标准固体板材(如 PTFE 或者石蜡,粗糙度要求 Ra²
 <0.3um,表面能值可以使用水和二碘甲烷分别测量接触角并使用 OWRK 方法计算可得)
- 使用待测液体在上述板材上测得接触角(可通过座滴法或力学法测得)
 注:可参考 ISO 19403-5 2017
- 1. 双击 ADVANCE, 打开 Advance 软件,选择"液体极性"方法后,选择模板"液体极性",创建新的测量。

KRUSS ADVANCE	Drop Shape Foam Analysis Tensiometer					
最后一次测量 所保存的测量	选择测量方法	-			选择模板	
	☆ 比较 比較 比較 比較 比較 比較 (1 (1 (1 (1 (1 (1 (1 (1 (1 (\bigcirc	循环 自动重复测量	t	2	
	表面自由能计算方法 使用不同的接触组文件计算表画能	Pie -	液体极性			
	顶视法液滴 从顶部期料的接触角度	++	粘附分析 用于界面接触的科学参数			
	喷墨 话行中液滴的形状和行为	(U)	振荡液滴 ^{转弹性模量}			<
	受束座滴法 在样品基度上的通过度演进行SFT分析	A	座滴法 ^{确定接触角度}			
	息滴法 下垂液海上的末面张力和界面张力	000	座滴法谱图 ^{指定位置处的接触角度}		目标位置: 所保存的测量	
					3	
	方法信息				模板详情	
方法前息 关于分析方法的信息,即如可做助模板来	#### 1				式为所已测量方法的面以模板。包可通过此模板新建一个测量。输入所需参数进 创建自定义的模板。	
79689736308是 199歲重突至。	素碳碳用于根系胺循角和表面性力效能计算液体表面张力的极作 该计算基于OWREX模型。该模型数定接触角分别来自进体和面向 需要液体在具有已知表面自由能的纯色数简体上的接触角发展。 算。	4.藤分和色数師分。 1的板性部分和色数碼 以及液体的表面型力	分之间的相互作用。 19.数据。可以使用限量结束或于动输入的结束进行计			

 在测量页面分别在对应位置输入表面能值,待测液体在标准固体板材的接触 角,待测液体的总表面张力值。如下图:

	31				Ruk (II)					
	(7.9×		可再改		接触角		2.添加液体接触角数据 —	→ 🗄		
KRUSSIADVANCE	合称	ACHARGE ACTIVITY	HER		测量名称	液相	0 [1]			
	详情					待测液体在PTFE接触角	90.00 (±)	1		
								1		
UNESEWIANE 7	19 H						100000	可删除		
最后次澜量 ◎							经周期1日			
所保存的测量	16.21						2 法加冻休的首主而逃去			
	圖相	共業 台	1	因体板材名称		108.48		-		
_		1079640		· EDMANXING CONDA	1000000000	待购液体表面张力	45.00 (±)			
	固体SFE	18.5	mN/m 1. 输入化	又含色散分量的表面能			1	4		
	模型	OWRK								
							, 输入表面张力值	可删除		
	半均值	☑ 使用误差分析								
	IC &				导出					
	Calculation v	was successful								
	名称	数值 単位	描述信息		SECTION OF CONTRACT OF CONTRACT.	el	•			
	θ	90.00 *	平均接触角值							
	σ <u>s</u>	18.5 mN/m 45.00 mN/m	非极性固体样品的表面目 液体总表而张力	田能						
	σL	17.64 mN/m	液体表面张力极性部分	4 海休的极性色散分量						
	σι	27.36 mN/m	液体表面张力色数部分	- REFEISTREEDINGS IN	日本 (19)日 (19)H (1	可导电数据				
						PJ 49 LISOM				
8 # B										
結果預算 液体极性的计算结果测索 计算结果会随着										
数据变化而更新。										

粘附分析

--基于 WORK 模型分析极性与色散相互作用分析

注意: 该方法是计算方法。不涉及到直接测量。但需要提前获得测试量:

ADVANCE

- 1. 已知液体的表面张力及色散分部,极性分部(可通过液体极性分析获得)
- 2. 已获得固体表面能值及色散分部,极性分部,(可以使用水和二碘甲烷分别测量接触角 并使用 OWRK 方法计算可得)
- 1. 双击 ADVANCE, 打开 Advance 软件,选择"粘附分析"方法后,选择模板"粘附 分析", 创建新的测量:

KRŰSS I ADVANCE	Drop Shape Four Analysis Tensiometer	
最后一次测量	选择测量方法	洗择模板
所保存的测量	- こうからあっておした (公) 電気不 日本の (市)	••••••••••••••••••••••••••••••••••••••
	岐園 振荡液滴 おかけ (15) (15) (15) (15) (15) (15) (15) (15)	
	受束庭滴法 在科局基本上的通过速源进行517分析 產這些最新成	
	思測法 下振荡端上が表面化力和界版派力 定滴法道图 和注化器は分支に対応的保護	目标位置:所保存的测量
	<	, 🛄 3
2 Ø B	方法信息	使批评情 金为新述期最力法的意义模拟、你可通过出模板面建一个期最、输入新能参数进而
フスの展開 关于分析方法的信息,即您可信助模板来 为设施方法创建一种期景思想		创建自定义的制权。
	· 我希望有少年的是之外就是我,则且是我又们了多年。 在而OWRX就是,若我是是最具有是之间最性的已是我分析是五分用的注意,是相当,才是我力、留放来我和某事务,可以更不知了的 國家我們最佳的自然分類又非常,或多,要是最常可以不多多人。因此真的出来之情。	n#

2. 在测量页面分别在对应位置输入固体表面能信息,液体表面张力及分部。软 件即可自行计算出结果。如下图:

ADVANCE											-	a x
	312				2045							Ξ
	名称	^{粘附分析} 可输入测量名称	,可修改		固体	_	lum lui		1.	添加固体信	息	
	详情					I	ptfe	18.50	a [mN/m] a 18.50	[mN/m] 0.00	8815E [%] 0.00	0 🗖 ^
							固体名称,	表面能,	色散分部		i	可删除
最后一次測量 ◎	+ +											
所保存的测量	RE				浙体					2 法†	心态法信息	a 📺
➡ 粘斑分析 > ^	计算模式	画体vs.液体 •			303	Ŧ	/#85 σ (n	nN/m]	σ [°] (mN/m) σ	[mN/m]	版性 [%]	
							水	72.80	21.80	51.00	70.05	5 💼 ^
							液体名称,表	面张力,	色散分部			可删除
	结果			🗿 🖂	四表				_			11 =
		púe			性质		擦触角 ["]	- 样	s pt	fe		•
		W _A 40.16	mN/m	1	ď	ímt/r	粘斑功 [mN/m]		可切换图	表显示性质	曲线	
	水	Y _{SL} 51.14 S -105.44	mN/m mN/m		80.0 G		iei [miv/m] 館辰系数 [mN/m]					
		8 116.63	-				搶触的 [*]	_				
		测量结果:			60.0 -			、				
× • •		Wa 是粘附功			(00)	<hr/>	15	\backslash				
屋性 (等值线的数量) 💿		Ysl 是界面张力				50						
选择数量(枯略刀、养如氐刀(叶)、铺展 系数、接触角),在图表中显示为等值线。		S 是铺展系数			20.0 -	\mathbf{X}	25				• *	
		U 是预测接触用				A,	150 125	/				
						\sim						
					0.0	0	10.0 20.0	a ^r ImN/a	0.0	40.0	50.0	60.0
								 fund/u 	.,			

接触角测量仪常见问题

Q: 图像太暗?

A1: 可以在"实时显示"处" ? 处调整亮度,并降低录制速度。

A2: 通过切换灯箱更高亮度的挡位。

Q: 样品粗糙,软件无法找准液滴的接触角基线?基线跳动大?

A1: 在"分析"窗口"基线"处,选择手动基线。然后在"实时图像"窗口拖动基线至真实位置。 A2: 调高背景亮度。

Q: 样品面积小? 同个实时显示窗口 有超过 1 个液滴的情况,系统无法选择计算哪个对象的接 触角?

A: 可以适当减少移液量, 然后在"实时显示"处" 这""勾选"感兴趣区域", 然后拖动方框 覆盖需要计算的液滴接触角。

Q: 接触角移液量需要多少 uL?

A: 推荐 1-6uL 液体。液滴体积过大可能会受重力影响改变轮廓, 过小容易受蒸发影响。

Q: 接触角拟合曲线应该选择哪个?

A: 20°-120°可以选择 Ellipse (tangent-1),小于 20°可以选择 Circle 或者 Height/Width, 130°以上可以选择 Young-Laplace 或者 Tangent,倾斜台请使用 Tangent。

Q: 样品太过疏水,移液过程出现爬针现象?

A1: 建议选择较小外径的且带有特氟龙镀层的针头(NE30)液滴到 6ul 左右自行滴落;

A2: DSA25 可以使用滴液器弹跳功能, 使 4ul 自行滴落

Q: 样品较小,需要使用较小液滴,如何设置?

A: 建议选择较小外径平头针头(如外径 0.2mm 针头),更小容量注射器(如 SY10),再通用设置 里的仪器配置设置注射器型号或者注射器内径,设置液滴体积(如 0.3ul)的同时需要设置较低 滴出速率(如 0.1ul/s)

Q: 悬滴法测量表/界面张力,通过调整液滴体积都无法使 B factor 形状系数落在绿色区间 0.4-0.75 之间?

A:此时只能更换不同外径的针头,如最大形状系数小于 0.4,则需更换成更大外径的针头;如最小形状系数大于 0.75 则需换成更小的针头。

Q: 座滴法多次测量,基线一直跳动理想的变化曲线,如何快速处理?

A: 可以在结果磁贴中,选中最开始的一个结果,在出现对应的图片中,选择"手动基线",拖动 基线到准确位置,按 shift 键选中所有需要重新计算的结果,然后点击"覆盖",软件将会对选中 的结果重新计算。